Current Issue : April-June Volume : 2025 Issue Number : 2 Articles : 5 Articles
Background/Objectives: Infectious diseases represent a serious threat due to rising antimicrobial resistance, particularly among multidrug-resistant bacteria and influenza viruses. Metal-based complexes, such as N-heterocyclic carbene–gold (NHC–gold) complexes, show promising therapeutic potential due to their ability to inhibit various pathogens. Methods: Eight NHC–gold complexes were synthesized and tested for antibacterial activity against Escherichia coli, Enterococcus faecalis, Staphylococcus aureus, and for anti-influenza activity in lung and bronchial epithelial cells infected with influenza virus A/H1N1. Antibacterial activity was assessed through the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC), while the viral load was quantified using qRT-PCR. Results: Complexes 3, 4, and 6 showed significant antibacterial activity at concentrations of 10–20 μg/mL. Additionally, these complexes significantly reduced viral load, with complexes 3 and 4 markedly inhibiting replication. Conclusions: These findings support the potential use of NHC–gold complexes in combined antimicrobial and antiviral therapies, representing an attractive option for fighting resistant infections....
Background/Objectives: Cyclophosphamide (CP) is widely used for treating various cancers and autoimmune diseases, but it causes damage to reproductive organs due to oxidative stress (OS) and inflammation. Boric acid (BA) has antioxidant properties that may help reduce OS, which is critical for preserving uterine functionality, particularly for cancer patients considering pregnancy after cryopreservation. This study aimed to determine whether BA could diminish CPinduced toxicity in the uterus and fallopian tubes (FT) using CP-induced toxicity in a rat model. Methods: Forty female Wistar rats, aged 18–20 weeks, were divided into four groups as follows: control, oral BA (OBR), CP, and CP plus OBR (CP + OBR). The toxicity was induced in the CP and CP + OBR groups with an initial dose of 200 mg/kg CP, followed by 8 mg/kg daily for 14 days. Rats in the OBR and CP + OBR groups received 20 mg/kg/day of BA. After the 16-day experiment, tissues were collected for analysis. Results: Histopathological and immunohistochemical assessments of IL-6 and HIF-1α expressions were used to evaluate inflammation and OS. The control, OBR, and CP + OBR groups maintained normal tissue features, while the CP group showed epithelial cell shedding, vacuolization, degenerative endometrial glands, lymphocyte infiltration, and reduced collagen fiber density. Elevated HIF-1α and IL-6 expressions in the uterus and FT indicated significant OS and inflammation. Conclusions: The study concluded that BA supplementation in CP-treated rats effectively reduced CP-induced uterine and FT damage, suggesting the potential protective role of BA in managing CP-associated toxicity....
Background/Objectives: Pinocembrin is a promising drug candidate for treating ischemic stroke. The interaction of pinocembrin with drug transporters and drugmetabolizing enzymes is not fully revealed. The present study aims to evaluate the interaction potential of pinocembrin with cytochrome P450 (CYP450: CYP2B6, CYP2C9, and CYP2C19) and drug transporters including organic anion transporters (OAT1 and OAT3), organic cation transporters (OCT1 and OCT2), multidrug and toxin extrusion (MATE1 and MATE2, P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP). Methods: The interactions of pinocembrin on drug transporters were determined in the Madin–Darby canine kidney (MDCK) cells overexpressing human (h)OAT1 or hOAT3 and in the Chinese hamster ovary (CHO-K1) cells overexpressing hOCT1, hOCT2, hMATE1, or hMATE2. The interactions of pinocembrin with BCRP and P-glycoprotein were determined in Caco-2 cells. The CYP450 enzyme inhibitory activity was assessed by a cell-free CYP450 screening assay. Results: Pinocembrin effectively inhibited the function of OAT1 and OAT3 with a half-inhibitory concentration (IC50) and inhibitory constant (Ki) of ∼2 μM. In addition, it attenuated the toxicity of tenofovir, a substrate of hOAT1, in cells overexpressing hOAT1. Based on the kinetic study and molecular docking, pinocembrin inhibited OAT1 and OAT3 via a competitive inhibition. In contrast to hOAT1 and hOAT3, pinocembrin did not significantly inhibit the function of OCT1, OCT2, MATE1, MATE2, BCRP, and P-glycoprotein. In addition, pinocembrin potently inhibited the activity of CYP2C19, whereas it exhibited low inhibitory potency on CYP2B6 and CYP2C9. Conclusions: The present study reveals the potential drug interaction of pinocembrin on OAT1, OAT3, and CYP2C19. Co-administration with pinocembrin might affect OAT1-, OAT3-, and CYP2C19-mediated drug pharmacokinetic profiles....
Chondroitin sulfate (CS), a class of glycosaminoglycans covalently attached to proteins to form proteoglycans, is widely distributed in the extracellular matrix and cell surface of animal tissues. In our previous study, CS was used as a template for the synthesis of seleno-chondroitin sulfate (SeCS) through the redox reaction of ascorbic acid (Vc) and sodium selenite (Na2SeO3) and we found that SeCS could inhibit tumor cell proliferation and invasion. However, its effect on angiogenesis and its underlying mechanism are unknown. In this study, we analyzed the effect of SeCS on tube formation in vitro, based on the inhibition of tube formation and migration of human umbilical vein endothelial cells (HUVECs), and evaluated the in vivo angiogenic effect of SeCS using the chick embryo chorioallantoic membrane (CAM) assay. The results showed that SeCS significantly inhibited the angiogenesis of chicken embryo urothelium. Further mechanism analysis showed that SeCS had a strong inhibitory effect on VEGFR2 expression and its downstream PI3K/Akt signaling pathway, which contributed to its anti-angiogenic effects. In summary, SeCS showed good anti-angiogenic effects in an HUVEC cell model and a CAM model, suggesting that it may be a potential angiogenesis inhibitor....
Background/Objectives: This study aimed to evaluate the therapeutic effects of combined 5% lifitegrast (LF) and tocopherol (TCP) eye drops in a murine experimental dry eye (EDE) model. Methods: Female C57BL/6 were divided into seven groups: untreated controls, EDE control, EDE + 0.05% cyclosporin A (CsA), EDE + tocopherol (TCP), EDE + 5% LF, EDE + 5% LF + TCP (once daily), and EDE + 5% LF + TCP (twice daily). Clinical parameters (tear volume, tear break-up time (TBUT), corneal fluorescein staining score (CFSS), tear film lipid layer grade (TFLLG)) were assessed on days 7 and 14. Goblet cell density in the conjunctiva, CD4+ IFN-γ+ T cells, interleukin levels, reactive oxygen species (ROS) levels, and corneal apoptotic cells were analyzed on day 14. Results: Monotherapy with 0.05% CsA and LF showed improvements in all clinical parameters compared to the EDE control (p < 0.05). Combination therapy groups demonstrated superior improvements in clinical parameters compared to the EDE control, 0.05% CsA, and 5% LF groups. CD4+ IFN-γ+ T cell percentages and ROS levels in the cornea and conjunctiva were markedly reduced in the combination groups compared with the 0.05% CsA and 5% LF groups (p < 0.01). Furthermore, corneal apoptotic cells significantly decreased in the combination groups compared to the 0.05% CsA and TCP groups (p < 0.05). Conclusions: Combined 5% LF and TCP eye drops improved tear film parameters and reduced inflammatory and oxidative stress markers. The combination therapy can mitigate ocular surface damage by managing inflammation and oxidative stress in dry eye....
Loading....